首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   204677篇
  免费   11329篇
  国内免费   5852篇
电工技术   7739篇
技术理论   9篇
综合类   10280篇
化学工业   31624篇
金属工艺   11645篇
机械仪表   10738篇
建筑科学   12020篇
矿业工程   4405篇
能源动力   4539篇
轻工业   11281篇
水利工程   3421篇
石油天然气   8454篇
武器工业   961篇
无线电   23260篇
一般工业技术   30791篇
冶金工业   8417篇
原子能技术   1552篇
自动化技术   40722篇
  2024年   272篇
  2023年   1979篇
  2022年   2893篇
  2021年   4666篇
  2020年   3653篇
  2019年   3178篇
  2018年   17447篇
  2017年   16903篇
  2016年   13225篇
  2015年   5245篇
  2014年   6277篇
  2013年   7263篇
  2012年   11046篇
  2011年   17815篇
  2010年   15472篇
  2009年   12444篇
  2008年   13459篇
  2007年   14310篇
  2006年   7244篇
  2005年   7204篇
  2004年   5205篇
  2003年   4752篇
  2002年   3704篇
  2001年   3091篇
  2000年   3345篇
  1999年   3467篇
  1998年   2899篇
  1997年   2416篇
  1996年   2180篇
  1995年   1858篇
  1994年   1575篇
  1993年   1104篇
  1992年   844篇
  1991年   703篇
  1990年   558篇
  1989年   429篇
  1988年   354篇
  1987年   208篇
  1986年   188篇
  1985年   108篇
  1984年   67篇
  1983年   37篇
  1982年   58篇
  1968年   43篇
  1966年   42篇
  1965年   45篇
  1958年   38篇
  1957年   36篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 781 毫秒
31.
32.
针对国内45 t门座起重机大车行走机构平衡梁裂缝问题。分析平衡梁裂缝产生原因并提出相应的维修方案,并对维修关键技术中的顶升方案设计,采用Ansys软件对其强度进行了有限元分析,同时对维修前后的平衡梁进行分析并对比。将维修方案应用于实际工程,取得了较好效果。该顶升机构修复方案设计符合工程实际,对工程实践具有一定的指导意义。  相似文献   
33.
介绍了西藏华泰龙矿业开发有限公司角岩的矿石性质,针对该低品位铜矿石进行了详细的微生物浸出试验研究,在原矿铜品位仅为0.12%、SiO_2含量高达69.12%的情况下,用接种量为10%的浸矿菌液,浸出1 d时,铜浸出率即为34.44%,浸出11 d时,浸出率达到70.02%,此时较无菌条件下的浸出率高出17.46个百分点。  相似文献   
34.
高等教育质量提升的关键在于课程教学质量的不断完善。作为高等教育的重要环节,化学课程教学在非化学化工专业人才的知识体系构建、能力培养、素质养成方面有着不可或缺的作用。大学化学课程的教学实践表明,基于学习进程的评估有利于激发学生的学习积极性,显著提高教学班的整体成绩并实现课程教学质量的提升。  相似文献   
35.
36.
周忠强  惠虎  张亚林 《压力容器》2020,(2):37-40,70
铁素体钢在低温条件下存在明显的韧脆转变现象。为防止脆断事故的发生,需要确定铁素体钢制压力容器的最低使用温度。针对ASME中的A^D四条冲击豁免曲线,对应地选取了4种材料,基于材料实际的屈服强度和参考温度,按照ASME中豁免曲线的计算方法,计算得到4种材料的最低设计金属温度曲线,并与对应的A^D曲线对比,定量地分析ASME中豁免曲线的保守性。结果表明,ASME中的豁免曲线相对于材料自身的最低设计金属温度曲线保守性较大;韧性相近的材料被划分到不同的豁免曲线,使得韧性富裕量差异较大,对于某些材料,其断裂韧性被低估。  相似文献   
37.
Abstract

An eco-friendly catalyst system was synthesized using three step reaction. The Cu nanoparticles bridged aminoclay catalyst was analyzed using various analytical techniques. The structure of the catalyst was confirmed by FTIR and XRD. The synthesized catalyst system was used for the reduction of p-nitrophenol (NP), Cr(VI), and fluorescein (Flur) dye individually, as well as in their mixture forms. The kapp value was computed to access the efficiency of the catalyst. The results indicated that the kapp value of the individual system is higher than that of the mixture systems due to the absence of the complex formation reaction. The catalytic performance of the catalyst was also tested for the Schiff base (SB) formation between poly(ethyleneglycol) (PEG) and aniline (ANI) in an oxygen atmosphere. The 1H-NMR spectroscopy result indicates that the present catalyst system produced 86% yield.  相似文献   
38.
ABSTRACT

Polymeric foams have received increasing attention in both academic and industrial communities. Using of nanoparticles as heterogeneous nucleation agent has been verified as one of the most valid means to enhance cell nucleation and improve cell morphology. However, few researches have been conducted to investigate the effect of the nanoparticles’ spatial orientation on their nucleation efficiency. In this work, to study the influence of the orientation of nanoparticles on their performance in improving morphology of polymeric foam, thermoplastic polyurethane (TPU) composite fibers with different nanoparticles (carbon nanotubes, graphene and SiO2) were prepared by using different traction speeds. The different traction speeds lead to different orientation state of the nanoparticles which then resulted different nucleation effect. It was found that carbon nanotubes (CNTs) were easily oriented and aligned along the fiber length direction under the high traction speed, while graphene and SiO2 nanoparticles did not show orientation under the traction speed in this study. As a result, the foam of TPU/CNTs composite fibers from high traction speed exhibited a much smaller cell size and higher cell density compared to the foams of the fibers from low traction speeds, while TPU/graphene, and TPU/SiO2 composite fibers with different traction speeds showed almost similar cell size and size density after foaming, indicating that the orientated nanoparticles possessed higher heterogeneous nucleation efficiency. To our best knowledge, this work, for the first time, demonstrated the high nucleation effect of the aligned nanoparticles, which hopefully open a new path for improving the cell morphology of polymeric foam materials.  相似文献   
39.
40.
Recently, thermal interface materials (TIMs) are in great demands for modern electronics. For mechanically mixed polymer composite TIMs, the thermal conductivity and the mechanical properties are generally lower than expected values due to the sharply increased viscosity and poor filler dispersion. This work shows that addition of a small amount of polyester-based hyperbranched polymer (HBP) avoided the trade-off in mechanically mixed ABS/hexagonal boron nitride (h-BN) composites. After adding 0.5 wt% HBP, the maximum h-BN content in the composites increased from 50 to 60 wt%. The out-of-plane, in-plane thermal conductivity, and tensile strength of ABS/h-BN with 50 wt% h-BN were 0.408, 0.517 W/mK, and 18 MPa, respectively, and were increased to 0.729, 0.847 W/mK, and 32 MPa by adding 0.5 wt% HBP, while 0.972, 1.12 W/mK, and 29.5 MPa were achieved for ABS/h-BN/HBP with 60 wt% h-BN. The morphological and rheological results proved that these enhancements are due to the improved h-BN dispersion by decreasing viscosity of composites during mixing. Theoretical modeling based on the modified effective medium theory confirmed such results and showed that the interfacial thermal resistance also decreased slightly. Thus, this work demonstrates a facile and scalable method for simultaneously improving the thermal conductivity and mechanical properties of thermoplastic-based TIMs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号